翻訳と辞書
Words near each other
・ Maximal (Transformers)
・ Maximal arc
・ Maximal common divisor
・ Maximal compact subgroup
・ Maximal Crazy
・ Maximal element
・ Maximal ergodic theorem
・ Maximal evenness
・ Maximal function
・ Maximal ideal
・ Maximal independent set
・ Maximal information coefficient
・ Maximal lotteries
・ Maximal munch
・ Maximal pair
Maximal semilattice quotient
・ Maximal set
・ Maximal subgroup
・ Maximal torus
・ Maximal-ratio combining
・ Maximalism
・ Maximalist! (band)
・ Maximally informative dimensions
・ Maximally stable extremal regions
・ Maximaphily
・ Maximato
・ Maxime
・ Maxime (film)
・ Maxime Agueh
・ Maxime Alexandre


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Maximal semilattice quotient : ウィキペディア英語版
Maximal semilattice quotient

In abstract algebra, a branch of mathematics, a maximal semilattice quotient is a commutative monoid derived from another commutative monoid by making certain elements equivalent to each other.
Every commutative monoid can be endowed with its ''algebraic'' preordering ≤ . By definition, ''x≤ y'' holds, if there exists ''z'' such that ''x+z=y''. Further, for ''x, y'' in ''M'', let x\propto y hold, if there exists a positive integer ''n'' such that ''x≤ ny'', and let x\asymp y hold, if x\propto y and y\propto x. The binary relation \asymp is a monoid congruence of ''M'', and the quotient monoid M/ is the ''maximal semilattice quotient'' of ''M''.
This terminology can be explained by the fact that the canonical projection ''p'' from ''M'' onto M/ is universal among all monoid homomorphisms from ''M'' to a (∨,0)-semilattice, that is, for any (∨,0)-semilattice ''S'' and any monoid homomorphism ''f: M→ S'', there exists a unique (∨,0)-homomorphism g\colon M/\to S such that ''f=gp''.
If ''M'' is a refinement monoid, then M/ is a distributive semilattice.
==References==

A.H. Clifford and G.B. Preston, The Algebraic Theory of Semigroups. Vol. I. Mathematical Surveys, No. 7, American Mathematical Society, Providence, R.I. 1961. xv+224 p.


抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Maximal semilattice quotient」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.